Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hình hộp ABCD.A′B′C′D′, có đáy ABCD hình bình hành tâm O.
Khi đó 2AO bằng vectơ nào dưới đây?
Trong không gian Oxyz, gọi A′ là hình chiếu vuông góc của điểm A(1;2;3) trên mặt phẳng (Oyz) thì tọa độ AA′ là
Cho hàm số y=f(x) có đạo hàm f′(x)=(x−2024)2024(x−2025)2025,∀x∈R. Số điểm cực đại của hàm số đã cho là
Cho hàm số y=f(x) xác định trên R, có đồ thị như hình vẽ. Mệnh đề nào sau đây đúng?
Tổng giá trị lớn nhất và nhỏ nhất của hàm số y=x2+x2 trên đoạn [21;2] bằng
Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?
Điểm nào dưới đây thuộc đồ thị hàm số y=−x3+3x2−2?
Cho hàm số y=f(x) xác định trên R\{1} và có bảng biến thiên như hình bên dưới.
Số nghiệm của phương trình f(x)=0 là
Một ứng dụng của hàm số trong vật lý là hệ số tương đối tính Lorentz được cho bởi công thức γ(v)=1−c2v21, với v là vận tốc tương đối giữa các hệ quy chiếu quán tính, c là tốc độ ánh sáng trong chân không. Hàm này được sử dụng trong thuyết tương đối đặc biệt của Einstein để mô tả các hiệu ứng tương đối tính có đồ thị dưới đây:
Đồ thị hàm số đó có tiệm cận đứng là
Cho hình lăng trụ ABC.A′B′C′, M là trung điểm của BB′. Đặt CA=a, CB=b, AA′=c .Biết AM=m.a+n.b+k.c. Giá trị của m+n+6k là
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt SA=a;SB=d;SC=c; SD=b. Khẳng định nào sau đây đúng?
Cho hình hộp ABCD.A′B′C′D′; Các điểm M,N lần lượt thuộc các đường thẳng CA và DC′ sao cho MC=mMA;ND=mNC′. Đặt BA=a;BB′=b;BC=c.
a) BD′=a+b−c. |
|
b) BM=1−mc−ma. |
|
c) BN=1−m1a−1−mmb+c. |
|
d) m=21 thì MN // BD′. |
|
Cho hàm số y=f(x) liên tục trên đoạn [−1;3] và có đồ thị như hình vẽ.
a) Hàm số y=f(x) nghịch biến trên khoảng (0;2). |
|
b) [0;2]maxf(x)=1. |
|
c) Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [−1;3]. Giá trị của M+m là 2. |
|
d) Xét hàm số g(x)=f(x+1) thì [0;2]maxg(x)=−3. |
|
Cho hàm số y=f(x)=x+3x2+2x+1 có đồ thị là (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) y=f(x)=x−1+x+34,∀x∈(−∞;−3)∪(−3;+∞). |
|
b) Đồ thị (C) không có tiệm cận ngang. |
|
c) Đồ thị (C) có tiệm cận đứng là đường thẳng x=3. |
|
d) Đồ thị (C) có tiệm cận xiên là đường thẳng y=ax+b. Khi đó a2+b2=2. |
|
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Hình vẽ trên minh hoạ một chiếc đèn được treo cách trần nhà là 0,5 m, cách hai tường lần lượt là 1,2 m và 1,6 m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4 m, cách hai tường đều là 1,5 m. Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Cho hình hộp ABCD.A′B′C′D′. Một đường thẳng Δ cắt các đường thẳng AA′,BC,C′D′ lần lượt tại M,N,P sao cho NM=2NP. Tính MA′MA.
Trả lời:
Từ một miếng tôn có hình dạng là một nửa hình tròn bán kính R=3, người ta cắt ra một miếng hình chữ nhật MNPQ như mô tả trong hình vẽ.
Diện tích lớn nhất có thể có của hình chữ nhật nêu trên là bao nhiêu (đơn vị diện tích)? (Làm tròn kết quả đến chữ số hàng đơn vị)
Trả lời:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ:
Có bao nhiêu giá trị nguyên của tham số m để phương trình f(∣x+m∣)=m có đúng 6 nghiệm phân biệt?
Trả lời:
Tại một công ty sản xuất đồ chơi an toàn cho trẻ em, công ty phải chi 40000 USD để thiết lập dây chuyền sản xuất ban đầu. Sau đó, cứ sản xuất được một sản phẩm đồ chơi A, công ty phải trả 6 USD cho nguyên liệu ban đầu và nhân công. Gọi x, (x≥1) là số đồ chơi A mà công ty đã sản xuất và P(x) (đơn vị USD) là tổng số tiền bao gồm cả chi phí ban đầu mà công ty phải chi trả khi sản xuất x đồ chơi A. Người ta xác định chi phí trung bình cho mỗi sản phẩm đồ chơi A là F(x)=xP(x). Xem y=F(x) là hàm số theo x xác định trên nửa khoảng [1;+∞) có phương trình đường tiệm cận ngang là y=b. Tính b.
Trả lời:
Có bao nhiêu giá trị nguyên dương của m để hàm số y=3x4+4x3−12x2+m có 7 điểm cực trị?
Trả lời: