Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=(43)x2−2x+2. Khẳng định nào sau đây đúng?
Cho hàm số y=ax4+bx2+c,(a,b,c∈R;a=0) có đồ thị là đường cong như hình vẽ.
Giá trị cực tiểu của hàm số đã cho bằng
Biết hàm số y=x+1x+a (a là số thực cho trước, a=1) có đồ thị như hình vẽ:
Mệnh đề nào dưới đây đúng?
Giá trị nhỏ nhất của hàm số y=f(x)=x3+3x trên đoạn [−1;2] bằng
Đồ thị hàm số y=x−21−x2 có bao nhiêu đường tiệm cận?
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
Đồ thị hàm số y=x3−6x2+11x−6 cắt trục hoành tại bao nhiêu điểm phân biệt?
Tiếp tuyến của đồ thị hàm số y=−x3+2x−1 tại điểm M(0;−1) có hệ số góc là
Điểm nào dưới đây thuộc đồ thị hàm số y=−x3+3x2−2?
Một công ty chuyên sản xuất đồ gia dụng ước tính chi phí để sản xuất x (sản phẩm) là: C(x)=2x+50 (triệu đồng), khi đó G(x)=xC(x) là chi phí sản xuất cho mỗi sản phẩm. Xem G(x) là một hàm số xác định trên [0;+∞), số tiệm cận ngang của đồ thị hàm số G(x) là
Với giá trị nào dưới đây của m thì hàm số y=cos2x+mx đồng biến trên R?
Để đồ thị hàm số y=x+a−x2+x+a có tiệm đứng và tiệm cận xiên, trong đó tiệm cận xiên đi qua điểm A(2;0) thì giá trị của tham số a là
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Cho hàm số y=f(x)=x+3x2+2x+1 có đồ thị là (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) y=f(x)=x−1+x+34,∀x∈(−∞;−3)∪(−3;+∞). |
|
b) Đồ thị (C) không có tiệm cận ngang. |
|
c) Đồ thị (C) có tiệm cận đứng là đường thẳng x=3. |
|
d) Đồ thị (C) có tiệm cận xiên là đường thẳng y=ax+b. Khi đó a2+b2=2. |
|
Một vật chuyển động thẳng được cho bởi phương trình: s(t)=−31t3+4t2+9t, trong đó t tính bằng giây và s tính bằng mét.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vận tốc của vật tại các thời điểm t=3 giây là v(3)=1 m/s. |
|
b) Quãng đường vật đi được từ lúc bắt đầu chuyển động đến khi vật đứng yên là 162 m. |
|
c) Gia tốc của vật tại thời điểm t=3 giây là a(3)=2 m/s2. |
|
d) Trong 9 giây đầu tiên, khoảng thời gian (giây) vật tăng tốc là t∈[0;4]. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Tại một công ty sản xuất đồ chơi an toàn cho trẻ em, công ty phải chi 40000 USD để thiết lập dây chuyền sản xuất ban đầu. Sau đó, cứ sản xuất được một sản phẩm đồ chơi A, công ty phải trả 6 USD cho nguyên liệu ban đầu và nhân công. Gọi x, (x≥1) là số đồ chơi A mà công ty đã sản xuất và P(x) (đơn vị USD) là tổng số tiền bao gồm cả chi phí ban đầu mà công ty phải chi trả khi sản xuất x đồ chơi A. Người ta xác định chi phí trung bình cho mỗi sản phẩm đồ chơi A là F(x)=xP(x). Xem y=F(x) là hàm số theo x xác định trên nửa khoảng [1;+∞) có phương trình đường tiệm cận ngang là y=b. Tính b.
Trả lời:
Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hoá bằng hàm số y=f(t)=1+5e−t5000,t≥0, trong đó thời gian t (năm) được tính kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm f′(t) sẽ biểu thị tốc độ bán hàng. Sau khi phát hành bao nhiêu năm thì tốc độ bán hàng là lớn nhất? (làm tròn kết quả tới chữ số hàng phần mười)
Trả lời:
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x (đơn vị cm) sao cho thể tích khối hộp lớn nhất.
Trả lời:
Một chất điểm chuyển động theo quy luật và quãng đường di chuyển được sau t giây được tính theo công thức S(t)=−3t3+243t2 (m). Vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu giây?
Trả lời:
Cho hàm số y=f(x) có đạo hàm trên R. Biết rằng hàm số y=f′(x) có đồ thị như hình vẽ bên dưới.
Đồ thị hàm số y=f(3x−2) cắt đường thẳng y=2x−3 tại nhiều nhất bao nhiêu điểm?
Trả lời:
Cho hàm số y=f(x) có đạo hàm trên R và thoả mãn f(−3)=f(3)=21. Biết rằng hàm số y=f′(x) là một hàm số bậc ba có đồ thị như hình vẽ.
Hàm số g(x)=[f(3−x)]2−f(3−x) đồng biến trên khoảng (a;+∞). Tìm giá trị nguyên nhỏ nhất của a.
Trả lời: