Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có đồ thị là đường cong như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=x4−32x3−x2. Mệnh đề nào sau đây đúng?
Hình vẽ trên là bảng biến thiên của hàm số nào sau đây?
Trong không gian Oxyz, cho hai vectơ u=(−1;1;3) và v=(−2;1;−3). Giá trị của ∣2u−3v∣ là
Khảo sát thời gian tự học bài ở nhà của học sinh khối 9 ở trường X, ta thu được bảng sau:
Thời gian (phút) | Số học sinh |
[0;30) | 9 |
[30;60) | 10 |
[60;90) | 9 |
[90;120) | 15 |
[120;150) | 7 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Cho hàm số y=x−1x+m với m là tham số. Số giá trị nguyên của m thỏa mãn [2;4]miny=3 là
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=2sinx trên đoạn [−6π;65π]. Tích m.M bằng
Một tác giả muốn xuất bản một cuốn sách Toán học. Biết phí xuất bản là 7 triệu đồng và giá tiền in mỗi cuốn sách là 50 nghìn đồng. Gọi t≥1 là số cuốn sách sẽ in và f(t) (nghìn đồng) là chi phí trung bình của mỗi cuốn sách. Phương trình đường tiệm cận ngang của đồ thị hàm số y=f(t) là
Trong mặt phẳng tọa độ Oxy, gọi (C) là đồ thị hàm số y=x−2x−1. Phương trình tiếp tuyến của (C) tại giao điểm của đồ thị (C) với trục hoành là
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Phỏng vấn một số học sinh khối 11 về thời gian (giờ) ngủ của một buổi tối, người ta thu được bảng số liệu sau:
Thời gian (giờ) | Số lượng |
[4;5) | 6 |
[5;6) | 12 |
[6;7) | 13 |
[7;8) | 10 |
[8;9) | 3 |
Khoảng tứ phân vị của bảng số liệu trên gần nhất với giá trị nào dưới đây?
Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:
Quãng đường (km) | Số ngày |
[2,7;3,0) | 3 |
[3,0;3,3) | 6 |
[3,3;3,6) | 5 |
[3,6;3,9) | 4 |
[3,9;4,2) | 2 |
Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)
Chi phí nhiên liệu của một chiếc tàu chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng mỗi giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v=10 km/h thì phần thứ hai bằng 30 nghìn đồng mỗi giờ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi vận tốc v=10 (km/h) thì chi phí nguyên liệu cho phần thứ nhất trên mỗi km đường sông là 48000 đồng. |
|
b) Hàm số xác định tổng chi phí nguyên liệu trên mỗi km đường sông với vận tốc x km/h là f(x)=x480+0,03x3. |
|
c) Khi vận tốc v=30 km/h thì tổng chi phí nguyên liệu trên mỗi km đường sông là 43000 đồng. |
|
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên mỗi km đường sông nhỏ nhất là v=20 km/h. |
|
Cho hàm số y=x−2−x2+4x+3+m có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi m=0, tiệm cận đứng của đồ thị hàm số là x=2. |
|
b) Khi m=0, tọa độ giao điểm tiệm cận đứng của (C) với đường thẳng x−y−1=0 thuộc parabol y=x2. |
|
c) Khi m=0, lấy M là điểm bất kì trên đồ thị (C), gọi d1 là khoảng cách từ M đến đường tiệm cận đứng, gọi d2 là khoảng cách từ M đến đường thẳng y=−x+2. Tích d1.d2=7. |
|
d) Gọi S là tập hợp các giá trị nguyên dương của m để (C) không có tiệm cận đứng. Số phần tử của S là 1. |
|
Trong không gian cho hình lập phương ABCD.A′B′C′D′ có độ dài cạnh là a. Gọi O là giao điểm của BD và AC.
a) A′C−A′A=AB+AD. |
|
b) BC′=A′A+B′C′. |
|
c) C′O=C′A′−OA′. |
|
d) A′D.A′B=0. |
|
Bảng sau đây cho biết chiều cao của các học sinh lớp 12A và lớp 12B.
Chiều cao (cm) |
Số học sinh của lớp 12A |
Số học sinh của lớp 12B |
[145;150) | 1 | 0 |
[150;155) | 0 | 0 |
[155;160) | 10 | 15 |
[160;165) | 12 | 9 |
[165;170) | 12 | 10 |
[170;175) | 5 | 8 |
a) So sánh hai khoảng biến thiên của hai mẫu số liệu trên, ta thấy mẫu số liệu về chiều cao của lớp 12A phân tán hơn lớp 12B. |
|
b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A là 159,5. |
|
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12B là 9,5. |
|
d) So sánh hai khoảng tứ phân vị của hai mẫu số liệu ghép nhóm, ta thấy mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A phân tán hơn của lớp 12B. |
|
Bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch ở nông trường như sau:
Cân nặng (g) | Số quả xoài |
[250;290) | 2 |
[290;330) | 12 |
[330;370) | 19 |
[370;410) | 12 |
[410;450) | 5 |
Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
Trả lời: .
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ:
Có bao nhiêu giá trị nguyên của tham số m để phương trình f(∣x+m∣)=m có đúng 6 nghiệm phân biệt?
Trả lời:
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x (đơn vị cm) sao cho thể tích khối hộp lớn nhất.
Trả lời:
Hình vẽ trên minh hoạ một chiếc đèn được treo cách trần nhà là 0,5 m, cách hai tường lần lượt là 1,2 m và 1,6 m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4 m, cách hai tường đều là 1,5 m. Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Gọi M,N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm đoạn MN và P là điểm bất kì trong không gian. Tìm giá trị k trong đẳng thức vectơ PI=k(PA+PB+PC+PD). (Ghi kết quả dưới dạng số thập phân)
Trả lời:
Một bể chứa 1000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 15 gam muối cho mỗi lít nước với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Phương trình tiệm cận ngang của đồ thị hàm số y=f(t) là y=a. Tính a.
Trả lời: