Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=31x3−21x2−12x−1. Mệnh đề nào sau đây đúng?
Hàm số y=x2−4x+3 có điểm cực tiểu là
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Đồ thị hàm số y=4x−1x+1 có đường tiệm cận ngang là đường thẳng nào dưới đây?
Số giao điểm của đồ thị hàm số y=−2x4+x2+23 và trục hoành là
Đồ thị trong hình vẽ là đồ thị của hàm số nào dưới đây?
Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. Giá trị của k thích hợp điền vào đẳng thức vectơ DA+DB+DC=kDG là
Trong không gian với hệ toạ độ Oxyz, cho hình lập phương ABCD.A′B′C′D′ có đỉnh A trùng với gốc toạ độ O, điểm B(1;0;0), D(0;1;0), D′(0;1;−1). Toạ độ vectơ CA′ tương ứng là
Trong không gian Oxyz, cho hai điểm A(2;3;4) và B(3;0;1). Độ dài của vectơ AB bằng
Giá trị lớn nhất của hàm số y=−x4+3x2+1 trên [0;2] là
Số đường tiệm cận của đồ thị hàm số y=x2−42x2−3x−2 là
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=2sinx trên đoạn [−6π;65π]. Tích m.M bằng
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Cho hàm số y=x−23x−2 có đồ thị (C) và đường thẳng d:y=x+1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) (C) cắt trục hoành tại điểm có hoành độ x=2. |
|
b) Đường tiệm cận ngang của đồ thị hàm số (C) là y=32. |
|
c) Giao điểm của (C) với trục tung là N(0;−2). |
|
d) Đường thẳng d cắt (C) tại hai điểm A và B thì tọa độ trung điểm M của đoạn thẳng AB là M(2;3). |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Một vật nặng O được kéo từ ba hướng như hình vẽ và chịu tác dụng của ba lực F1,F2,F3, có độ lớn lần lượt là 24 N, 12 N, 6 N. Biết góc tạo bởi hai lực F1,F2 là 120∘ và lực thứ ba vuông góc với hai lực đầu tiên.
Trong đó điểm D là đỉnh của hình bình hành OBDA và E là đỉnh của hình bình hành OCED.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) BO+BA=BD. |
|
b) OE=OA+OB+OC. |
|
c) Độ dài vectơ OD là 127. |
|
d) Độ lớn hợp lực tác dụng vào vật O là 613 N. |
|
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x (đơn vị cm) sao cho thể tích khối hộp lớn nhất.
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà lần lượt buộc vào ba điểm A,B,C trên đèn tròn sao cho tam giác ABC đều. Độ dài L của ba đoạn dây OA,OB,OC đều bằng l (m). Trọng lượng của chiếc đèn là 27 N và bán kính của chiếc đèn là 0,5 m.
Xác định chiều dài tối thiểu của mỗi sợi dây. Biết rằng mỗi sợi dây đó được thiết kế để chịu được lực căng tối đa là 12 N. (Chiều dài tính theo đơn vị cm và làm tròn đến chữ số thập phân thứ nhất)
Trả lời:
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số y=f(t) là y=10. Tính nồng độ muối trong bể sau khi bơm được 1 giờ. (làm tròn kết quả đến hàng phần trăm, đơn vị gam/lít)
Trả lời:
Cho hàm số y=f(x) có đồ thị như hình vẽ.
Hàm số y=4−f2(x) có bao nhiêu điểm cực trị?
Trả lời:
Hàm số y=(x+m)3+(x+n)3−x3 đồng biến trên khoảng (−∞;+∞). Giá trị nhỏ nhất của biểu thức P=100[4(m2+n2)−m−n] bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời: