Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Kiểm tra cuối chương I SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các hàm sau đây, hàm số nào không nghịch biến trên R?
Cho hàm số y=2x−43x−1. Khẳng định nào sau đây đúng?
Hàm số y=f(x)=(x−3)4+2024 có bao nhiêu điểm cực trị?
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ.
Mệnh đề nào sau đây đúng?
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=x4−2x2+3 lần lượt là
Giá trị lớn nhất của hàm số y=f(x)=x+2x+1 trên đoạn [1;3] bằng
Cho hàm số y=f(x) có x→+∞limf(x)=2, x→−∞limf(x)=+∞. Khẳng định nào sau đây đúng?
Đồ thị hàm số y=4x−1x+1 có đường tiệm cận ngang là đường thẳng nào dưới đây?
Đồ thị trong hình vẽ là đồ thị của hàm số nào dưới đây?
Điểm nào dưới đây thuộc đồ thị hàm số y=−x3+3x2−2?
Với giá trị nào dưới đây của m thì hàm số y=cos2x+mx đồng biến trên R?
Hàm số y=x3(1−x)2
Số giá trị của tham số m để đồ thị hàm số y=mx+1x+m không có tiệm cận đứng là
Đường cong ở hình vẽ trên là của đồ thị hàm số nào?
Trong một trò chơi thử thách, bạn Giáp đang ở trên thuyền (vị trí A) cách bờ hồ (vị trí C) 300 m và cần đi đến vị trí B trên bờ hồ như hình vẽ, khoảng cách từ C đến B là 400 m, lưu ý là Giáp có thể chèo thuyền thẳng từ A đến B hoặc chèo thuyền từ A đến một điểm nằm giữa C và B rồi chạy bộ đến B.
Biết rằng Giáp chèo thuyền với tốc độ 50 m/phút và chạy bộ với tốc độ 100 m/phút.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Thời gian Giáp chèo thuyền thẳng từ A đến B là là 10 phút. |
|
b) Thời gian Giáp chèo thuyền từ A đến C rồi chạy bộ từ C đến B là là 10 phút. |
|
c) Giả sử Giáp chèo thuyền thẳng đến điểm D nằm giữa B và C và cách C một đoạn x (m) như hình vẽ dưới đây, rồi chạy bộ đến B thì thời gian Giáp đi từ A đến B được tính bằng công thức f(x)=1001(x2+90000+400−x) (phút).![]() |
|
d) Thời gian nhanh nhất để Giáp đi từ A đến B xấp xỉ 9,2 phút (kết quả làm tròn đến hàng phần mười). |
|
Một vật chuyển động có phương trình quãng đường tính bằng mét phụ thuộc thời gian t tính bằng giây được biểu thị bởi hàm số f(t)=−t3+9t2+21t (m).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Quãng đường mà vật đi được sau 2 s kể từ lúc bắt đầu chuyển động là 70 m . |
|
b) Vận tốc lớn nhất của vật thể là 21 (m/s). |
|
c) Vận tốc của vật tăng từ lúc bắt đầu chuyển động đến giây thứ 3. |
|
d) Kể từ lúc bắt đầu chuyển động đến khi dừng hẳn, vật đi được quãng đường là 250 m. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Cho hàm số y=x+1x2+2x+2 có đồ thị (C). Gọi A;B lần lượt là điểm cực tiểu và điểm cực đại của (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định của hàm số là R. |
|
b) Hàm số nghịch biến trên khoảng (−2;0). |
|
c) Tọa độ điểm A(0;2),B(−2;−2). |
|
d) Khoảng cách giữa hai điểm cực trị là AB=5. |
|
Một doanh nghiệp sản xuất độc quyền một loại sản phẩm. Giả sử khi sản xuất và bán hết x sản phẩm (0<x<2000), tổng số tiền doanh nghiệp thu được là F(x)=2000x−x2 (chục nghìn đồng) và tổng chi phí doanh nghiệp bỏ ra là G(x)=x2+1440x+50 (chục nghìn đồng). Công ty cũng phải chịu mức thuế phụ thu cho một đơn vị sản phẩm bán được là t (chục nghìn đồng), (0<x<300). Mức thuế phụ thu t (trên một đơn vị sản phẩm) là bao nhiêu nghìn đồng sao cho nhà nước thu được số tiền thuế phụ thu lớn nhất và doanh nghiệp cũng thu được lợi nhuận nhiều nhất theo đúng mức thuế phụ thu đó? (Kết quả làm tròn đến hàng đơn vị)
Trả lời:
Một xí nghiệp A chuyên cung cấp sản phẩm S cho nhà phân phối B. Hai bên thỏa thuận rằng, nếu đầu tháng B đặt hàng x tạ sản phẩm S thì giá bán mỗi tạ sản phẩm S là P(x)=6−0,0005x2 (triệu đồng) (x≤40). Chi phí A phải bỏ ra cho x tạ sản phẩm S trong một tháng là C(x)=10+3,5x (triệu đồng) và mỗi sản phẩm bán ra phải chịu thêm mức thuế là 1 triệu đồng. Trong một tháng B cần đặt hàng bao nhiêu tạ sản phẩm S thì A có được lợi nhuận lớn nhất, kết quả làm tròn đến hàng phần mười.
Trả lời:
Từ một tấm tôn hình chữ nhật có các kích thước là x (m), y (m) với x>1 và y>1 và diện tích bằng 4 m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m.
Thể tích của thùng là hàm số V(x) trên khoảng (1;+∞). Đồ thị hàm số y=V(x)1 có bao nhiêu đường tiệm cận đứng?
Trả lời:
Biết thể tích V (đơn vị: centimét khối) của 1 kg nước tại nhiệt độ T, (0∘C ≤T≤30∘C) được tính bởi công thức: V(T)=999,87−0,06426T+0,0085043T2−0,0000679T3. Thể tích V(T) thấp nhất ở nhiệt độ bao nhiêu? (làm tròn đến hàng đơn vị của đơn vị ∘C)
Trả lời:
Cho hàm số y=cx+dx+b (với b,c,d∈R) có đồ thị như hình vẽ.
Tính giá trị biểu thức T=2b+3c+4d.
Trả lời: