Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Mệnh đề phủ định của "14 là số nguyên tố" là
Cho mệnh đề chứa biến P(x;y): "−2x+y≥0". Giá trị nào sau đây của biến x;y làm cho P(x;y) trở thành một mệnh đề đúng?
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A={x∈Rx≤1} ta có
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Cặp số nào sau đây không là nghiệm của bất phương trình 2x+y<1?
Giá trị của biểu thức A=sin215∘+sin275∘+cos120∘ là
Cho tam giác ABC có AB=5, AC=2, C=45∘. Độ dài cạnh BC là
Mệnh đề phủ định của mệnh đề "9+π≥12" là
Cho A=(−∞;−2]; B=[3;+∞) và C=(0;4). Khi đó tập (A∪B)∩C là
Cho A là tập hợp các số tự nhiên chẵn không lớn hơn 10, B={n∈Nn≤6}, C={n∈N4≤n≤10}. Tập hợp A∩(B∪C) là
Miền không bị gạch là miền nghiệm của hệ bất phương trình nào sau đây?
Phần tô màu (không bao gồm đường thẳng nét đứt) trong hình nào sau đây là miền nghiệm của bất phương trình 2x−y+3<0?




Lớp 10A có tất cả 40 học sinh trong đó có 13 học sinh chỉ thích đá bóng, 18 học sinh chỉ thích chơi cầu lông và số học sinh còn lại thích chơi cả hai môn thể thao nói trên.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Có 9 học sinh thích chơi cả hai môn cầu lông và bóng đá. |
|
b) Có 22 học sinh thích bóng đá. |
|
c) Có 26 học sinh thích cầu lông. |
|
d) Có 21 học sinh chỉ thích chơi một trong hai môn cầu lông và bóng đá. |
|
Một xưởng sản xuất định lựa chọn hai loại máy chế biến loại I và loại II. Máy loại I mỗi ngày một máy chế biến được 300 kg sản phẩm, máy loại II mỗi ngày một máy chế biến được 450 kg sản phẩm. Biết rằng, để có lãi mỗi ngày xưởng phải sản xuất được nhiều hơn 50 tấn sản phẩm. Gọi x, y tương ứng là số lượng máy loại I và máy loại II xưởng chọn để sản xuất.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khối lượng sản phẩm tạo ra trong một ngày từ số lượng máy trên là F(x;y)=30x+45y. |
|
b) Để đảm bảo xưởng có lãi mỗi ngày, ta cần 6x+9y−1000>0. |
|
c) Xưởng nên lựa chọn 50 máy chế biến loại I và 80 máy chế biến loại II để đảm bảo có lãi. |
|
d) Nếu xưởng lựa chọn 70 máy chế biến loại I và 60 máy chế biến loại II sẽ không đảm bảo có lãi. |
|
Cho sinα=31.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cos2α=98. |
|
b) A=sin2α+3cos2α=935. |
|
c) B=5sin2α−cos2α=−31. |
|
d) C=sin2α+3cos2α+cos2α−7sin2α=2. |
|
Cho A là tập hợp các học sinh lớp 10 đang học ở trường X và B là tập hợp các học sinh đang học môn Tiếng Anh của trường X.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A∩B là tập hợp các học sinh lớp 10 học môn Tiếng Anh ở trường X. |
|
b) A\B là tập hợp những học sinh lớp 10 và không học Tiếng Anh ở trường X. |
|
c) A∪B là tập hợp các học sinh lớp 10 và học sinh học môn Tiếng Anh ở trường X. |
|
d) B\A là tập hợp các học sinh học lớp 10 ở trường X nhưng không học môn Tiếng Anh. |
|
Cho các tập hợp khác rỗng A=(m−18;2m+7), B=(m−12;21) và C=(−15;15). Có bao nhiêu giá trị nguyên của tham số m để A\B⊂C?
Trả lời:
Bạn Khương bản Mộc thống kê số ngày có mưa, có sương mù ở bản mình trong tháng 3 vào một thời điểm nhất định và được kết quả như sau: 14 ngày có mưa, 15 ngày có sương mù, trong đó 10 ngày có cả mưa và sương mù. Trong tháng 3 đó có bao nhiêu ngày không có mưa và không có sương mù?
Trả lời:
Tìm giá trị nguyên âm lớn nhất của tham số m để điểm M(1;2) thuộc miền nghiệm của bất phương trình bậc nhất hai ẩn (m+1)x+(m2+m)y−1>0.
Trả lời:
Một công ty sản xuất thuốc trừ sâu cần làm hai loại thuốc trừ sâu A,B được yêu cầu phải sản xuất ít nhất 20 kg thuốc loại A và 20 kg thuốc loại B khối lượng thuốc loại A phải nhiều hơn khối lượng thuốc loại B ít nhất là 10 kg. Để sản xuất được 1 kg thuốc loại A cần 1 kg nguyên liệu I và 2 kg nguyên liệu II; sản xuất 1 kg thuốc loại B cần 1 kg nguyên liệu loại I và 1 kg nguyên liệu loại II. Biết trong kho của công ty hiện còn 70 kg nguyên liệu loại I và 110 kg nguyên liệu loại II. Biết giá của 1 kg nguyên liệu loại I là 200 nghìn đồng và giá của 1 kg nguyên liệu loại II là 350 nghìn đồng. Để chi phí sản xuất là nhỏ nhất thì công ty phải sản xuất bao nhiêu kg thuốc loại A?
Trả lời:
Tìm giá trị nhỏ nhất của biểu thức F(x;y)=x−y với điều kiện ⎩⎨⎧x≥0y≥0x+y−3≤0.
Trả lời:
Giả sử chúng ta cần đo chiều cao CD của một cái tháp với C là chân tháp, D là đỉnh tháp. Vì không thể đến chân tháp được nên từ hai điểm A,B có khoảng cách AB=30 m sao cho ba điểm A,B,C thẳng hàng, người ta đo được các góc CAD=43∘, CBD=67∘.
Tính chiều cao CD của tháp (Làm tròn kết quả đến chữ số hàng đơn vị của mét)
Trả lời: