Tính đạo hàm của hàm số y=f(x)=-6x²+9x-2 bằng định nghĩa
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


NV
Nguyễn Việt Lâm
Giáo viên
23 tháng 4 2022
\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)
\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
VT
0


NT
Nguyễn Thị Thương Hoài
Giáo viên
VIP
30 tháng 11 2024
Không có gì là quá dễ dàng cũng không hẳn là có những có khăn mà ta không thể vượt qua được trong môn toán.
Việc học toán dễ hay khó chủ yếu là do nhận thức và nỗ lực, ý thức của từng người em nhé.
Quan trọng là phải kiên trì, nỗ lực, nắm vững kiến thức nền tảng, chịu khó và đam mê thì môn toán sẽ trở nên dễ dàng, em ạ!
Cảm ơn em đã đồng hành cùng Olm.

8 tháng 11 2024
trả lời đi chứ mình ra đề nhưng cũng hong biết trả lời vô tư
Tại điểm \(x=x_0\) bất kì, ta có:
\(f'\left(x_0\right)=\lim\limits_{x\rightarrow x_0}\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}=\lim\limits_{x\rightarrow x_0}\dfrac{-6x^2+9x-2-\left(-6x_0^2+9x_0-2\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{-6x^2+6x_0^2+9x-9x_0}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{-6.\left(x^2-x_0^2\right)+9\left(x-x_0\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{-6\left(x-x_0\right)\left(x+x_0\right)+9\left(x-x_0\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{\left(x-x_0\right)\left[-6\left(x+x_0\right)+9\right]}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\left[-6\left(x+x_0\right)+9\right]\)
\(=-6.\left(x_0+x_0\right)+9\)
\(=-12x_0+9\)
Vậy \(f'\left(x\right)=-12x+9\)
Gọi \(\Delta x,\Delta y\) lần lượt là số gia của biến \(x\) và \(y\) .
Đặt \(x=x_0\in R\). Khi đó \(f\left(x_0+\Delta x\right)=-6\left(x_0+\Delta x\right)^2+9\left(x_0+\Delta x\right)-2\)
\(=-6x_0^2+9x_0-2-6\left(\Delta x_0\right)^2-12x_0\Delta x+9\Delta x\)
\(\rArr\Delta y=f\left(x_0+\Delta x\right)-f\left(x_0\right)\)
\(=-6\left(\Delta x\right)^2-12x_0\Delta x+9\Delta x\)
Ta có \(f^{\prime}\left(x_0\right)=\lim_{\Delta x\rarr0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\rarr0}\left(\frac{-6\left(\Delta x\right)^2-12x_0\Delta x+9\Delta x}{\Delta x}\right)\)
\(=\lim_{\Delta x\rarr0}\left(-6\Delta x-12x_0+9\right)\)
\(=-12x_0+9\)
Như vậy \(f^{\prime}\left(x\right)=-12x+9\)