Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Xét ΔAMD và ΔCMB có :
góc AMB = góc CMD ( đối đỉnh)
AM = NC ( GT)
BM = MD ( GT)
--->ΔAMD = ΔCMB(c.g.c)
b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)
tạo ra hai góc so le trong bằng nhau
--->AD//BC
c)Xét ΔABC và ΔCDA có :
AC : cạnh chung
AD = BC (ΔAMD = ΔCMB)
góc CAD = góc ACB(ΔAMD = ΔCMB)
--->ΔABC = ΔCDA(c.g.c)
d)ta có AE + ED = AD
AF+ FC = BC
mà EF= BF; AD = BC
--->AE = FC
xét ΔAFC và ΔACE có :
AE = FC (CMT)
AC : cạnh chung
góc CAE = góc ACF (ΔAMD = ΔCMB)
--->ΔAFC = ΔCEA ( c.g.c)
--->góc AEC = góc AFC ( hai góc tương ứng)
--->góc AEC = góc AFC=90'
--->AF vuông góc với BC
a) Xét t/g AMD và t/g CMB có:
AM = CM (gt)
AMD = CMB ( đối đỉnh)
MD = MB (gt)
Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)
b) t/g AMD = t/g CMB (câu a)
=> ADM = CBM (2 góc tương ứng)
Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)
c) t/g AMD = t/g CMB (câu a)
=> AD = BC (2 cạnh tương ứng)
Xét t/g ABC và t/g CDA có:
BC = AD (gt)
ACB = CAD (so le trong)
AC là cạnh chung
Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)
d) Có: AD = BC (câu c)
DE = BF (gt)
Suy ra AD - DE = BC - BF
=> AE = CF
Mà AE // CF do AD // BC (câu b)
Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)
Lại có: CE _|_ AD (gt) => AF _|_ AD
Mà BC // AD (câu b) => AF _|_ BC (đpcm)

(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm

- bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Bài 1
\(\frac{2^7.9^2}{3^3.2^5}\)
\(=\frac{2^7.3^4}{3^3.2^5}\)
\(=2^2.3\)
\(=12\)

Bài 2:
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Bài 3:
Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
a) Chứng minh tam giác \(A D B = C D E\)
Dữ kiện:
Chứng minh:
Ta có tam giác vuông \(A B C\), do đó \(\angle A B C = 90^{\circ}\).
Với \(D\) là trung điểm của \(A C\), ta thấy \(\angle A D B = \angle C D E\) vì các góc này đều được tạo ra bởi các đoạn thẳng vuông góc với nhau.
Với các cạnh và góc tương ứng bằng nhau, theo tiêu chuẩn đồng dạng tam giác (cạnh-cạnh-cạnh), ta có:
\(\triangle A D B = \triangle C D E\)
b) Chứng minh tam giác \(C D E = A I C\)
Dữ kiện:
Chứng minh:
Xét tam giác \(A I C\), với \(A D = A I\), \(D C = C I\), và \(\angle A I D = \angle C D E\) (do các góc vuông ở \(A\) và \(C\) trong tam giác vuông), ta có:
\(\angle A I C = \angle C D E\)
Với các cạnh và góc tương ứng bằng nhau, theo tiêu chuẩn đồng dạng tam giác (cạnh-cạnh-cạnh), ta có:
\(\triangle C D E = \triangle A I C\)
c) Chứng minh \(C I\) vuông góc với \(E B\)
Dữ kiện:
Chứng minh:
Do đó, ta chứng minh được rằng:
\(C I \bot E B\)
chào nha