K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

1024=2x+2y+2z≤2z+2z+2z⇒2z>341⇒z>8(1)1024=2x+2y+2z≤2z+2z+2z⇒2z>341⇒z>8(1)

1024=2x+2y+2z>2zz<10(2)1024=2x+2y+2z>2z⇒z<10(2)

Từ (1) và (2) suy ra 8<z<108<z<10.

Mà zz là số tự nhiên nên z=9z=9.

⇒2x+2y=512⇒2x+2y=512

Ta lại có : 512=2x+2y≤2y+2y=2.2y⇒2y≥216⇒y≥8512=2x+2y≤2y+2y=2.2y⇒2y≥216⇒y≥8  

Mà 512=2x+2y>2yy<9512=2x+2y>2y⇒y<9.

Từ hai điều trên y=8⇒2x=216⇒x=8⇒y=8⇒2x=216⇒x=8.

Vậy x=y=8,z=9x=y=8,z=9.

30 tháng 3

1024=2x+2y+2z≤2z+2z+2z⇒2z>341⇒z>8(1)1024=2x+2y+2z≤2z+2z+2z⇒2z>341⇒z>8(1)

1024=2x+2y+2z>2z⇒z<10(2)1024=2x+2y+2z>2z⇒z<10(2)

Từ (1) và (2) suy ra 8<z<108<z<10.

Mà zz là số tự nhiên nên z=9z=9.

⇒2x+2y=512⇒2x+2y=512

Ta lại có : 512=2x+2y≤2y+2y=2.2y⇒2y≥216⇒y≥8512=2x+2y≤2y+2y=2.2y⇒2y≥216⇒y≥8  

Mà 512=2x+2y>2y⇒y<9512=2x+2y>2y⇒y<9.

10 tháng 6 2019

Em làm cô vui lòng xem giúp em ạ

Có: \(x,y,z>0\)

Nên: \(7^y>1\)

Mà \(7^y+2^z=2^x+1\)(1)

\(\Leftrightarrow2^x>2^z\Rightarrow x>z\)

Xét TH1: y lẻ

Có: \(\left(1\right)\Leftrightarrow2^x-2^z=7^y-1\)

\(\Leftrightarrow2^z\left(2^{x-z}-1\right)=7^y-1\)

Có: y lẻ nên: \(7^y-1=\left(7-1\right)\cdot A=6A⋮6\)

\(\Leftrightarrow7^y-1\equiv2\)(mod 4)

Vì thế: \(2^z=2\)\(\Rightarrow z=1\)(vì với z>1 thì \(2^z\equiv0\)(mod 4)

Thay vào PT: \(2^x-2=7^y-1\)

\(\Leftrightarrow2^x=7^y+1\)

\(\Leftrightarrow2^x=\left(7+1\right)\left(7^{y-1}-7^{y-2}+...-7+1\right)\)

\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7+1\right)=8B\)

Vì B lẻ nên: \(2^x=8\)\(\Rightarrow x=3\)\(\Rightarrow y=1\)

Được: \(\left(x;y;z\right)=\left(3;1;1\right)\)

TH2: Khi y chẵn:

\(2^z\left(2^{x-z}-1\right)=7^y-1\)

Vì y chẵn nên: 

\(2^z\left(2^{x-z}-1\right)=\left(7+1\right)\left(7-1\right)C=48C=16\cdot3C\)

Vì: \(2^{x-z}-1\equiv1\)(mod 2)

Nên: \(2^z=16\Rightarrow z=4\)

Thế vào: 

\(2^x+1=7^y+16\)

\(\Leftrightarrow2^x=7^y+15\)

\(\Leftrightarrow2^x=7^y+7+8\)

\(\Leftrightarrow2^x=7\left(7^{y-1}+1\right)+8\)

\(\Leftrightarrow2^x=7\cdot8\cdot\left(7^{y-2}-7^{y-3}+...-7+1\right)+8\)

\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7^2+7+1\right)=8S\)

Vì S chia hết cho 8

nên: \(2^x=64P\Rightarrow2^x=64\Rightarrow x=6\)

\(\Rightarrow y=2\)

Vì thế: \(\left(x;y;z\right)=\left(6;2;4\right)\)

Vậy: \(\left(x;y;z\right)=\left(6;2;4\right);\left(3;1;1\right)\)

10 tháng 6 2019

\(3\)

\(1\)

\(1\)

9 tháng 3 2019

a,  \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)          (2)

Xét \(x=0\Rightarrow y=z=0\Rightarrow2y+4z=0\)  (vô lí)

\(\Rightarrow x\ne0;y\ne0;z\ne0\)

Khi đó từ (2) \(\Rightarrow\frac{2y+4x}{xy}=\frac{4z+6y}{yz}=\frac{6x+2z}{zx}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)

\(\Rightarrow\frac{2}{x}+\frac{4}{y}=\frac{4}{y}+\frac{6}{z}=\frac{6}{z}+\frac{2}{x}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)

\(\Rightarrow\frac{2}{x}=\frac{4}{y}=\frac{6}{z}\) và \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=2.\frac{2}{x}\)

Đặt \(\frac{2}{x}=\frac{4}{y}=\frac{6}{z}=\frac{1}{k}\left(k\ne0\right)\)thì \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=\frac{2}{k}\)

\(\Rightarrow x=2k;y=4k;z=6k\)và \(x^2+y^2+z^2=28k\)   (3)

\(thay\)  \(x=2k;y=4k;z=6k\)vào (3)  ta được :

\(\left(2k\right)^2+\left(4k\right)^2+\left(6k\right)^2=28k\)

\(56k^2-28k=0\)

\(56k.\left(2k-1\right)=0\)

\(\Rightarrow k=0\)(loại)

Hoặc \(k=\frac{1}{2}\)( thỏa mãn)

Với \(k=\frac{1}{2}\)thì tìm được \(x=1;y=2;z=3\)

Vậy \(x=1;y=2;z=3\)

Ta có :

\(|x-y|+|y-z|+|z-x|=2019\)

\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)=2019\)

Nhận xét :

\(|a|+a=0\)với \(a\le0\)

\(|a|+a=2a\)với \(a\ge0\)

\(\Rightarrow|a|+a\)luôn chẵn với \(\forall a\)

\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)\)luôn chẵn với \(\forall x,y,z\)

mà \(2019\)lẻ

\(\Rightarrow\left(đpcm\right)\)

24 tháng 12 2018

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

24 tháng 12 2018

cảm ơn nhiều

17 tháng 12 2017

k là 2 vs -2

9 tháng 8 2016

Bài này quá dễ luôn

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

8 tháng 3 2016

Câu 1: x=-2;-1

Câu 2:

Câu 3: x=20

y=16

z=12

Câu 4: 0 bộ

8 tháng 3 2016
Ở câu 2 viết 43/30 dưới dạng liên phân số rồi đối chiếu kết quả để tìm x,y,z( vì mỗi phân số chỉ viết dược dưới dạng 1 liên phân số
7 tháng 2 2021

giúp mình với nhé!