
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Xem thêm : Chứng minh định lý Fermat nhỏ - Số học - Diễn đàn Toán học
Đây thực chất là c/m định lý nhỏ fec ma
thiếu n là số nguyên
cho nên đây không phải định lý Fermat

\(2^{24}=(2^3)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
vì \(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
\(2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
\(8< 9\)
\(\Rightarrow8^9< 9^9\)
\(\Rightarrow2^{24}< 3^{16}\)

Ta có :
\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(M>1\) \(\left(1\right)\)
Lại có :
\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{c+a}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{a+a}{a+b+c}+\frac{b+b}{a+b+c}+\frac{c+c}{a+b+c}=\frac{a+a+b+b+c+c}{a+b+c}=2\)
\(\Rightarrow\)\(M< 2\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(1< M< 2\)
Vậy \(M\) có giá trị không là số nguyên

a) Tính chu chu vi hai hình vuông có độ dài bằng “x”
b)Có hình vuông có độ dài bằng x và chiều rộng bằng ySau khi bớt chiều dài 2 đơn vị và chiều rộng 2 đơn vị. Hãy tính diện tích hình CN mới

\(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Khi x = 2 thì \(5x^2-2x+3x-1=5.2^2-2.2+3.2-1=20-4+6-1=21\)
Khi x = -2 thì \(5x^2-2x+3x-1=5.\left(-2\right)^2-2.\left(-2\right)+3.\left(-2\right)-1\)
\(=20+4-6-1=17\)
nhất thế giới hay nhất vn ạ
Bác Hồ