
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)
hay \(x\in\left\{0;-4;3\right\}\)
d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)
hay \(x\in\left\{-6;1;-1;-4\right\}\)
f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
hay \(x\in\left\{-3;2\right\}\)

1) \(\frac{8xy\left(3x-1\right)^3}{12x^3\left(1-3x\right)}=-\frac{8xy\left(3x-1\right)^3}{12x^3\left(3x-1\right)}=-\frac{2y\left(3x-1\right)^2}{3x^2}\)
2) \(\frac{5x^3+5x}{x^4-1}=\frac{5x\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2-1\right)}=\frac{5x}{x^2-1}\)
3) \(\frac{9-\left(x+5\right)^2}{x^2+4x+4}=\frac{\left(3-x-5\right)\left(3+x+5\right)}{\left(x+2\right)^2}=\frac{-\left(x+2\right)\left(x+8\right)}{\left(x+2\right)^2}=-\frac{x+8}{x+2}\)
3) \(\frac{32x-8x^2+2x^3}{x^3+64}=\frac{2x\left(16-4x+x^2\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\frac{2x}{x+4}\)

mk viết đáp án, ko biết biến đổi ib mk
a) \(x^3+3x^2y-9xy^2+5y^3=\left(x+5y\right)\left(x-y\right)^2\)
b) \(x^4+x^3+6x^2+5x+5=\left(x^2+5\right)\left(x^2+x+1\right)\)
c) \(x^4-2x^3-12x^2+12x+36=\left(x^2-6\right)\left(x^2-2x-6\right)\)
d) \(x^8y^8+x^4y^4+1=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\left(x^4y^4-x^2y^2+1\right)\)

4: \(3x^3-5x^2+5x-2\)
\(=3x^3-2x^2-3x^2+2x+3x-2\)
\(=x^2\left(3x-2\right)-x\left(3x-2\right)+\left(3x-2\right)\)
\(=\left(3x-2\right)\left(x^2-x+1\right)\)
5: \(5x^3-12x^2+14x-4\)
\(=5x^3-2x^2-10x^2+4x+10x-4\)
\(=\left(5x-2\right)\left(x^2-2x+2\right)\)

\(f,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(t=x^2+5x+4\) , ta có
\(t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t^2+2t+1\right)-25\)
\(=\left(t+1\right)^2-5^2\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)
\(=\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(g,\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(t=x^2-8x+7\), ta có:
\(t\left(t+8\right)-20\)
\(=t^2+8t-20\)
\(=\left(t^2+8t+16\right)-36\)
\(=\left(t+4\right)^2-6^2\)
\(=\left(t+4+6\right)\left(t+4-6\right)\)
\(=\left(t+10\right)\left(t-2\right)\)
\(=\left(x^2-8x+7+10\right)\left(x^2-8x+7-2\right)\)
\(=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)

a)\(\Leftrightarrow-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=-\frac{3x^2}{x+1}+\frac{3x}{x+1}+3x\)
\(\Rightarrow\frac{3x^2}{x+1}-\frac{4x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}-3x+\frac{1}{x-1}=0\)
\(\Leftrightarrow-\frac{2x\left(3x-5\right)}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Rightarrow\int^{\frac{x-1}{1}=0}_{\frac{x+1}{1}=0}\Rightarrow x=0\)
=>3x=5
\(\Rightarrow x=\frac{3}{5}\)
vậy \(x=\frac{3}{5}\) hoặc 0
b)x = -(20309916*i+23555105)/9277755;
x = -(985155752*i-35635815)/916564140;
x = (985155752*i+35635815)/916564140;
x = (20309916*i-23555105)/9277755;
c)\(\Leftrightarrow\frac{x+2}{x-1}=\frac{1}{1}\Rightarrow\left(x+2\right)1=\left(x-1\right)1\)
vì \(\left(x+2\right)1\ne\left(x-1\right)1\)
=>x vô nghiệm hoặc đề sai

1. \(\left(4x+7\right)\left(3x+4\right)=\left(12x-5\right)\left(x-1\right)\)
\(12x^2+16x+21x+28=12x^2-12x-5x+5\)
\(12x^2+37x+28-12x^2+17x-5=0\)
54x+23=0
54x=-23
x=-23/54
2. \(\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(15x^2-5x-3x+1=15x^2+10x-21x-14\)
\(15x^2-8x+1-15x^2+11x+14=0\)
3x+15=0
3x=-15
x=-5

a)\(x^3y^3+x^2y^2+4\)
\(=x^3y^3-x^2y^2+2xy+2x^2y^2-2xy+4\)
\(=xy\left(x^2y^2-xy+2\right)+2\left(x^2y^2-xy+2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)
b)\(x^4+x^3+6x^2+5x+5\)
\(=x^4+x^2+x^2+5x^2+5x+5\)
\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)
\(=\left(x^2+5\right)\left(x^2+x+1\right)\)
c)\(x^4-2x^3-12x^2+12x+36\)
\(=x^4-2x^3-6x^2-6x^2+12x+36\)
\(=x^2\left(x^2-2x-6\right)-6\left(x^2-2x-6\right)\)
\(=\left(x^2-6\right)\left(x^2-2x-6\right)\)
d)\(x^8y^8+x^4y^4+1\)
\(=x^8y^8+2x^4y^4+1-x^4y^4\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1+x^2y^2\right)\left(x^4y^4+1-x^2y^2\right)\)
\(=\left(x^4y^4+2x^2y^2+1-x^2y^2\right)\left(x^4y^4+1-x^2y^2\right)\)
\(=\left(\left(x^2y^2+1\right)^2-\left(xy\right)^2\right)\left(x^4y^4+1-x^2y^2\right)\)
\(=\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\left(x^4y^4+1-x^2y^2\right)\)
\(12x-4+5x=3\left(x+1\right)\)
=>\(17x-4=3x+3\)
=>\(17x-3x=4+3\)
=>14x=7
=>\(x=\dfrac{7}{14}=\dfrac{1}{2}\)
12x−4+5x=3(x+1)
\(12 x + 5 x - 4 = 3 x + 3\)
\(17 x - 4 = 3 x + 3\)
\(17 x - 3 x = 3 + 4\)
\(14 x = 7\) \(x = \frac{7}{14}\)
\(x = \frac{1}{2}\)