K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

đề sai

26 tháng 6 2019

x=1, y=2, z=3, x+y+z=6. Cách giải thì mình không biết, nhưng chắc chắn bằng 6 đấy.

4 tháng 3 2018

Đề sai kìa bạn , xem lại phân số : (y+t/x+y)^2014

4 tháng 3 2018

vậy bn làm theo cái đúng của bn,mong bn giúp mk

6 tháng 2 2016

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x}{z}+\frac{y}{x}+\frac{z}{y}\)

<=>x2z+y2x+z2y=x2y+y2z+z2x

<=>(x2z-x2y)+(y2x-z2x)+(z2y-y2z)=0

<=>x2.(z-y)-x.(z-y)(z+y)+yz.(z-y)=0

<=>(z-y)(x2-xz-xy+yz)=0

<=>(z-y)(x-z)(x-y)=0

<=>x=y=z

Mà x+y+z=3

=>x=y=z=1

6 tháng 2 2016

Có thể   \(x=y=z=1\)

20 tháng 8 2020

Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)

Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)

\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)

Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)

Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng

Như vậy (3),(4) đúng => (2) đúng

Từ đó suy ra \(T\ge\frac{4}{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)

19 tháng 6 2023

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

19 tháng 6 2023

avt ảnh bạn à, vừa handsome vừa học giỏi nx -.-

DD
9 tháng 3 2021

Ta có bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) với \(x,y>0\).

Dấu \(=\)xảy ra khi \(x=y\).

Ta có: \(\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)

\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\).

Tương tự với hai số hạng còn lại. 

Suy ra \(P\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

\(=\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{2020}{4}=505\).

Dấu \(=\)xảy ra khi \(x=y=z=\frac{3}{2020}\).

7 tháng 1 2020

Áp dụng bđt AM-GM ta được:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge2\sqrt{\frac{y^2}{z+x}.\frac{z+x}{4}}=y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}=z\)

Cộng từng vế các bất đẳng thức trên ta được

\(A+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow A\ge\frac{x+y+z}{2}=1\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

8 tháng 1 2020

Cách 2:Dù dài hơn Lê Tài Bảo Châu

\(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\left(x+y+z\right)\cdot\frac{x}{y+z}\)

\(\frac{y^2}{z+x}+y=\left(x+y+z\right)\cdot\frac{y}{z+x};\frac{z^2}{x+y}+z=\left(x+y+z\right)\cdot\frac{z}{x+y}\)

Suy ra \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

Đến đây thay x+y+z=2 và BĐT netbitt là ra ( chứng minh netbitt nha )

Cách 3:

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)