Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(Bạn tự vẽ hình giùm)
a/ \(\Delta AMB\)và \(\Delta AMN\)có: AB = AN (gt)
\(\widehat{BAM}=\widehat{MAN}\)(AM là tia phân giác \(\widehat{A}\))
Cạnh AM chung
=> \(\Delta AMB\)= \(\Delta AMN\)(c - g - c) (đpcm)
b/ Ta có \(\Delta AMB\)= \(\Delta AMN\)(cm câu a) => \(\widehat{ABM}=\widehat{ANM}\)(hai góc tương ứng) (1)
và MB = MN (hai cạnh tương ứng)
Từ (1) => 180o - \(\widehat{ABM}\)= 180o - \(\widehat{ANM}\)
=> \(\widehat{EBM}=\widehat{MNC}\)
\(\Delta MBE\)và \(\Delta MNC\)có: \(\widehat{EMB}=\widehat{NMC}\)(đối đỉnh)
MB = MN (cmt)
\(\widehat{EBM}=\widehat{MNC}\)(cmt)
=> \(\Delta MBE\)= \(\Delta MNC\)(g - c - g) => ME = MC (hai cạnh tương ứng) (đpcm)

A B C M N J G K I
a) Ta thấy \(\widehat{MAC}=\widehat{MAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{CAN}+\widehat{BAC}=\widehat{BAN}\)
Xét tam giác MAC và BAN có:
AM = AB
AC = AN
\(\widehat{MAC}=\widehat{BAN}\)
\(\Rightarrow\Delta MAC=\Delta BAN\left(c-g-c\right)\)
b) Do \(\Delta MAC=\Delta BAN\Rightarrow MC=BN\) (Hai cạnh tương ứng)
Ta cũng có \(\widehat{AMC}=\widehat{ABN}\)
Gọi giao điểm của AB và MC là J, của MC và BD là G.
Xét tam giác vuông MAJ ta có \(\widehat{AMJ}+\widehat{MJA}=90^o\)
Mà \(\widehat{AMJ}=\widehat{JBG};\widehat{MJA}=\widehat{BJG}\) (Hai góc đối đỉnh)
nên \(\widehat{JBG}+\widehat{BJG}=90^o\Rightarrow\widehat{JGB}=90^o\) hay \(MC\perp BN\)
c) Ta thấy ngay \(\Delta AMK=\Delta ABI\left(c-g-c\right)\Rightarrow AK=AI\) (Hai cạnh tương ứng)
Ta cũng có \(\Delta AIN=\Delta AKC\left(c-c-c\right)\Rightarrow\widehat{IAN}=\widehat{KAC}\)
Vậy thì \(\widehat{IAK}=\widehat{IAC}+\widehat{CAK}=\widehat{IAC}+\widehat{IAN}=\widehat{CAN}=90^o\)
Suy ra \(AI\perp AK\)

A B C M N D
a, xét tam giác ABN và tam giác ACM có :
góc A chung
AB = AC (gt)
AN = AM (gt)
=> tam giác ABN = tam giacd ACM (c-g-c)
=> BN = CM (đn)
b, có AB = AC (gt)
AB = BM + MA
AC = CN + NA
AM = AN (gt)
=> BM = CN
AB = AC (gt) => tam giác ABC cân tại A (đn) => góc ABC = góc ACB (tc)
xét tam giác BCM và tam giác CBN có : BC chung
=> tam giác BCM = tam giác CBN (c-g-c)
c, tam giác BCM = tam giác CBN (Câu b)
=> góc DBC = góc DCB (đn) mà góc DBC = 30
xét tam giác DBC có : góc DBC + góc DCB + góc BDC = 180 (đl)
góc BDC = 180 - 30.2 = 120
mà góc BDC = góc MDN (đối đỉnh)
=> góc MDN = 120

a) Xét \(\Delta ABC\) vuông tại A
\(Bc^2=Ab^2+AC^2\Rightarrow AB^2=BC^2-AC^2=10^2-8^2\text{}\Rightarrow AB=6cm\)
b) Xét \(\Delta ABM\) và \(\Delta CDM\) có:
\(AM=CM;\widehat{AMB}=\widehat{CMD};BM=DM\)
\(\Rightarrow\) \(\Delta ABM\) = \(\Delta CDM\)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{DCM}=90^ohayAC\perp CD\)
c) Có : BC + DC > BD
mà BM = 2 BD ; DC = AB
\(\Rightarrow\) DC + BC > 2BM

Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618