K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 8 2021

Nối AN kéo dài cắt CD tại E, nối EM kéo dài cắt SD tại I

Do N là trung điểm OB \(\Rightarrow\dfrac{BN}{ND}=\dfrac{1}{3}\)

Áp dụng định lý talet: \(\dfrac{BF}{AD}=\dfrac{BN}{ND}=\dfrac{1}{3}\) \(\Rightarrow\dfrac{CF}{AD}=\dfrac{2}{3}\)

Cũng theo Talet:

\(\dfrac{FC}{FD}=\dfrac{CF}{AD}=\dfrac{2}{3}\) \(\Rightarrow\dfrac{DF}{FC}=\dfrac{3}{2}\)

Áp dụng định lý Menelaus cho tam giác SCD:

\(\dfrac{IS}{ID}.\dfrac{DF}{FC}.\dfrac{CM}{MS}=1\Rightarrow\dfrac{IS}{ID}.\dfrac{3}{2}.1=1\Rightarrow\dfrac{IS}{ID}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{SI}{SD}=\dfrac{2}{5}\)

NV
12 tháng 8 2021

undefined

Chọn B

NV
7 tháng 1 2024

Em kiểm tra lại đề, \(\left(\alpha\right)\) đi qua AI nên nó không thể cắt SA tại M được nữa (vì nó đi qua A nên đã cắt SA tại A rồi)

7 tháng 1 2024

Anh ơi, (a) qua điểm I có đúng không ạ anh, vì đề mờ chỗ đấy anh ạ, chắc chỉ qua điểm I thôi ạ 

NV
7 tháng 1 2024

Bài này cũng có thể ứng dụng bài này (vẫn là sử dụng diện tích tam giác):

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Nhưng đặc biệt hơn 1 chút là nó đi qua điểm A luôn (vậy ta có thể coi như (P) cắt SA tại A và áp dụng nó vẫn đúng):

\(\dfrac{SA}{SA}+\dfrac{SC}{SP}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}=\dfrac{2SO}{SI}=8\)

\(\Rightarrow1+\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}=16\)

\(\Rightarrow\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}=15\)

12 tháng 9 2017

5 tháng 3 2018

1 tháng 12 2018

Từ (1) (2) và (3) suy ra ba điểm F, G, H thuộc giao tuyến của hai mặt phẳng (MNP) và (ABCD).

Do đó ba điểm F, G, H thẳng hàng và G nằm giữa F và H.

Chọn C. 

2 tháng 4 2018