K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2019

giờ mik ns ý chính nha bn

bn chứng minh bất đẳng thức 

1/x+1/y lớn hơn hoặc bằng 4/(x+y)

cm bất đẳng thức này bằng cách quy đồng rồi nhân chéo lên

rồi ra thôi

hok tốt

14 tháng 2 2019

Lời giải

Áp dụng BĐT AM-GM(Cô si) cho hai số dương:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

Chia hai vế của BĐT cho 4: \(\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{x+y}^{\left(đpcm\right)}\)

AH
Akai Haruma
Giáo viên
11 tháng 2

Lời giải;

Vế 1:

Áp dụng BĐT AM-GM:

$2=(x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow x+y\leq \sqrt{2}$

$x^3+\frac{x}{2}\geq \sqrt{2}x^2$

$y^3+\frac{y}{2}\geq \sqrt{2}y^2$

$\Rightarrow x^3+y^3+\frac{x+y}{2}\geq \sqrt{2}(x^2+y^2)=\sqrt{2}$

$\Rightarrow x^3+y^3\geq \sqrt{2}-\frac{x+y}{2}\geq \sqrt{2}-\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$

-----------------------

Vế 2:

$x^2+y^2=1$

$\Rightarrow x^2=1-y^2\leq 1\Rightarrow -1\leq x\leq 1$

$y^2=1-x^2\leq 1\Rightarrow -1\leq y\leq 1$

$\Rightarrow x^3\leq x^2; y^3\leq y^2$

$\Rightarrow x^3+y^3\leq x^2+y^2$ hay $x^3+y^3\leq 1$

23 tháng 7 2016

Đặt  \(J=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)  với  \(\hept{\begin{cases}x,y,z>0\\x+y+z\le1\end{cases}}\left(i\right)\)

Áp dụng bất đẳng thức  \(B.C.S\)  cho hai bộ số thực không âm gồm có  \(\left(x^2;\frac{1}{x^2}\right)\)  và  \(\left(1^2+9^2\right),\) ta có:

\(\left(x^2+\frac{1}{x^2}\right)\left(1^2+9^2\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Rightarrow\)  \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{x}\right)\)   \(\left(1\right)\)

Đơn giản thiết lập hai bất đẳng thức còn lại theo vòng hoán vị  \(y\rightarrow z\) , ta cũng có:

\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{y}\right)\)   \(\left(2\right);\)   \(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{z}\right)\)  \(\left(3\right)\)

Cộng từng vế  các bđt  \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\) , suy ra:

\(J\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)

Ta có:

\(K=x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)

\(=\left(9x+\frac{1}{x}\right)+\left(9y+\frac{1}{y}\right)+\left(9z+\frac{1}{z}\right)+8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-8\left(x+y+z\right)\)

Khi đó, áp dụng bđt Cauchy đối với từng ba biểu thức đầu tiên, tiếp tục với bđt Cauchy-Swarz dạng Engel cho biểu thức thứ tư, chú ý rằng điều kiện đã cho  \(\left(i\right)\) , ta có:

\(K\ge2\sqrt{9x.\frac{1}{x}}+2\sqrt{9y.\frac{1}{y}}+2\sqrt{9z.\frac{1}{z}}+\frac{72}{x+y+z}-8\left(x+y+z\right)\)

     \(=6+6+6+72-8=82\)

Do đó,  \(K\ge82\)

Suy ra  \(J\ge\frac{82}{\sqrt{82}}=\sqrt{82}\)  (đpcm)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z=\frac{1}{3}\)

22 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(T=\frac{1}{xy}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{xy+xz}=\frac{4}{xy+xz}\)

Từ \(x+y+z=3\Rightarrow y+z=4-x\)

\(\Rightarrow T\ge\frac{4}{xy+xz}=\frac{4}{x\left(y+z\right)}=\frac{4}{x\left(4-x\right)}=\frac{4}{-x^2+4x}\)

Lại có: \(-x^2+4x=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\le4\)

\(\Rightarrow T\ge\frac{4}{-x^2+4x}\ge\frac{4}{4}=1\)

Đẳng thức xảy ra khi \(x=2;y=z=1\)

23 tháng 7 2018

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=1\).

17 tháng 6 2015

\(2x+y=\frac{x}{2}+\frac{x}{2}+\frac{x}{2}+\frac{x}{2}+y\ge5\sqrt[5]{\frac{x^4y}{16}}\)

\(5x^2+5y^2=\frac{5}{4}x^2+\frac{5}{4}x^2+\frac{5}{4}x^2+\frac{5}{4}x^2+5y^2\ge5\sqrt[5]{\frac{5^5}{4^4}x^8y^2}=5^2.\sqrt[5]{\frac{1}{4^4}}.\left(\sqrt[5]{x^4y}\right)^2\)

\(\Rightarrow\sqrt{5x^2+5y^2}\ge5.\sqrt[5]{\frac{1}{2^4}}.\sqrt[5]{x^4y}\)

\(10=2x+y+\sqrt{5x^2+5y^2}\ge10.\sqrt[5]{\frac{1}{16}}\sqrt[5]{x^4y}\)

\(\Rightarrow\sqrt[5]{x^4y}\le\sqrt[5]{16}\)\(\Rightarrow x^4y\le16\)

17 tháng 6 2015

có ai giải giúp mình không

18 tháng 9 2016

Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow T\ge1\)

Bài 2:

[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam