K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

Ta có:

\(2A=6x^2+6y^2+2z^2=\left(4x^2+z^2\right)+\left(4y^2+z^2\right)+\left(2x^2+2y^2\right)\)

Áp dụng BĐT AM-GM cho các số không âm, ta có:

\(2A\ge4\left(xy+yz+zx\right)=20\)

\(\Rightarrow A\ge10\)

\(''=''\Leftrightarrow x=y=1,z=2\)

19 tháng 8 2019

Thăn kiuuu bạn nè 😗

NV
16 tháng 1 2021

\(P\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\dfrac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\dfrac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)

\(P\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{\sqrt{xy.yz.zx}}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 1 2021

Ta có bất đẳng thức sau \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0.\)

Do đó:

\(P=\sum\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\sum\dfrac{\sqrt{xyz+xy\left(x+y\right)}}{xy}\)

\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\dfrac{1}{\sqrt{xy}}\cdot\dfrac{1}{\sqrt{yz}}\cdot\dfrac{1}{\sqrt{zx}}}=3\sqrt{3}\)

Đẳng thức xảy ra khi $x=y=z=1.$

AH
Akai Haruma
Giáo viên
17 tháng 1 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left [\frac{9}{1-(xy+yz+xz)}+\frac{1}{4xyz}\right]\left [1-(xy+yz+xz)+9xyz\right ]\geq (3+\frac{3}{2})^2=\frac{81}{4}\)

\(\Rightarrow P\geq \frac{81}{4[1-(xy+yz+xz)+9xyz]}\) $(1)$

Áp dụng BĐT Am-Gm: \(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 9xyz\)

\(\Rightarrow 1-(xy+yz+xz)+9xyz\leq 1\) $(2)$

Từ \((1),(2)\Rightarrow P\geq \frac{81}{4}\)

Vậy \(P_{\min}=\frac{81}{4}\Leftrightarrow (x,y,z)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\)

18 tháng 2 2022

+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7 

+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau: 

Không mất tính tổng quát: g/s: 

x ≥ y ≥ z

Vì x2 + y2 + z2 = 14 => 

x 2 ≤ 14

⇒ x ≤ √ 14 < 4

  Vì x nguyên dương 

=> x  ∈ { 1; 2; 3}

+)Vớix=3=>\hept{y+z=3y2+z2=5⇒\hept{y+z=y2≤5