K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

26 tháng 8 2017

Có \(\left(2a+9\right)⋮\left(a+2\right)\)

\(\Rightarrow2.\left(a+2\right)+5⋮\left(a+2\right)\)

Do \(2\left(a+2\right)⋮a+2\)

\(\Rightarrow5⋮a+2\)

\(\Rightarrow a+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Ta có bảng sau :

   a + 2   1   - 1   5   - 5
   a   - 1   - 3   3   - 7

Vậy \(a\in\left\{-1;-3;3;-7\right\}\)

21 tháng 3 2016

3n-9/n-2=3(n-2+7)/3(n-2)=1+7/n-2

=> n-2 thuộc ước của 7={+-1;+-7)

=> n-2 =-1=>n=1 

n-2=1=>n=3

n-2=-7=> n=-5

n-2=7=>n=9 (mình không chắc đúng nha! :) )

20 tháng 8 2015

mình giải câu đầu còn 3 câu còn lại bạn tự làm nhé

         a,ta có:n-1chia hết cho n-9

          suy ra n-9+8chia het cho n-9

          suy ra 8 chia het cho n-9

          suy ra n-9 thuoc uoc 8

          suy ra n-9=1=-1=2=-2=4=-4=8=-8

          suy ra n=10=8=11=9=13=11=17=15 (cung co the lap bang)

 

                   

27 tháng 1 2016

a, n thuộc 10;11

 

10 tháng 8 2016

a) 3538

b) 4680

 

10 tháng 8 2016

Thế thì bố m cx làm đc 

7 tháng 8 2016

Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1) 
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1) 
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên 
3/(n-1) nguyên khi (n-1) là Ước của 3 
khi (n-1) ∈ {±1 ; ±3} 
xét TH thôi : 
n-1=1 =>n=2 (tm) 
n-1=-1=>n=0 (tm) 
n-1=3=>n=4 (tm) 
n-1=-3=>n=-2 (loại) vì n ∈N 
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1 
--------------------------------------... 
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(... 
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên 
khi n+1 ∈ Ước của 5 
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1 
vậy n+1 ∈ {1;5} 
Xét TH 
n+1=1=>n=0 (tm) 
n+1=5>n=4(tm) 
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1 
--------------------------------------... 
Chúc bạn học tốt

7 tháng 8 2016

a/  N + 2 chia hết n - 1 

có nghĩa là \(\frac{n+2}{n-1}\) là số nguyên 

\(\frac{n+2}{n-1}=1+\frac{3}{n-1}\) muốn nguyên thì n-1 thuộc Ư(3)={-1,-3,1,3}

  • n-1=-1=>n=0
  • n-1=1=>n=2
  • n-1=-3=>n=-2
  • n-1=3=>n=4

do n thuộc N => cacsc gtri thỏa là {0,2,4}

b/  2n + 7 chia hết cho n+1 có nghĩa là : \(\frac{2n+7}{n+1}=2+\frac{5}{n+1}\)

là số nguyên 

để nguyên thì n+1 thuộc Ư(5)={1,5,-1,-5}

  • n+1=1=>n=0
  • n+1=-1=>n=-2
  • n+1=5=>n=4
  • n+1=-5=>n=-6

do n thuộc N nên : các giá trị n la : {0;4}