K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4

🤯🤯🤯🔪💀🔪😎😎😎😂😂😂

26 tháng 4 2017

Chọn D.

Ta có: z + z’ = (a + a’) + (b + b’)i  là số thuần ảo 

25 tháng 3 2016

Đặt \(z=a+bi\Rightarrow\overline{z}=a-bi,\left|z\right|=\sqrt{a^2+b^2}\) Hệ thức đã cho trở thàng \(z^{2002}=\overline{z}\)

\(\left|z\right|^{2002}=\left|z^{2002}\right|=\left|\overline{z}\right|=\left|z\right|\Rightarrow\left(\left|z\right|^{2001}-1\right)=0\)

Do đó :

\(\left|z\right|=0\) tức là (a,b) =(0,0) hoặc \(\left|z\right|=1\). Trong trường hợp \(\left|z\right|=1\), ta có :

\(z^{2002}=\overline{z}\Rightarrow z^{2002}=z.\overline{z}=\left|z\right|^2=1\)

Phương trình : \(z^{2002}=1\) có 2003 nghiệm phân biệt \(\Rightarrow\) có 2004 cặp thứ tự theo yêu cầu.

NV
31 tháng 3 2019

\(2\left|z\right|+i\left|z\right|=a+bi-1+2ai-2b+3i\)

\(\Leftrightarrow2\left|z\right|+i\left|z\right|=a-2b-1+\left(2a+b+3\right)i\) \(\Rightarrow\left[{}\begin{matrix}a-2b-1=2\left|z\right|\\2a+b+3=\left|z\right|\end{matrix}\right.\)

\(\Rightarrow3a+4b+7=0\Rightarrow b=\frac{-3a-7}{4}\) thế vào pt đầu

\(a+\frac{3a+7}{2}-1=2\sqrt{a^2+\frac{\left(3a+7\right)^2}{16}}\)

\(\Leftrightarrow5a+5=\sqrt{25a^2+42a+49}\Leftrightarrow\left\{{}\begin{matrix}5a+5\ge0\\\left(5a+5\right)^2=\left(25a^2+42a+49\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\ge-1\\8a=24\end{matrix}\right.\) \(\Rightarrow a=3\Rightarrow b=-4\Rightarrow S=-1\)

NV
3 tháng 6 2019

\(z+1+2i=\left(1+i\right)\left|z\right|=\left|z\right|+i.\left|z\right|\)

\(\Leftrightarrow z=\left|z\right|-1+\left(\left|z\right|-2\right)i\)

Lấy mođun 2 vế:

\(\Rightarrow\left|z\right|=\sqrt{\left(\left|z\right|-1\right)^2+\left(\left|z\right|-2\right)^2}\)

\(\Leftrightarrow\left|z\right|^2=\left|z\right|^2-2\left|z\right|+1+\left|z\right|^2-4\left|z\right|+4\)

\(\Leftrightarrow\left|z\right|^2-6\left|z\right|+5=0\Rightarrow\left[{}\begin{matrix}\left|z\right|=1\left(l\right)\\\left|z\right|=5\end{matrix}\right.\)

\(\Rightarrow a^2+b^2=5\)

Không đủ dữ kiện để tính \(P=a+b\)

14 tháng 1 2018

\(VT=\left(a+bi\right)^2+\left(a-bi\right)^2\\ =a^2+2abi-b^2+a^2-2abi-b^2\\ =2a^2-2b^2\\ =2\left(a^2-b^2\right)=VP\)

\(VT=\left(a+bi\right)^2-\left(a-bi\right)^2\\ =a^2+2abi-b^2-\left(a^2-2abi-b^2\right)\\ =a^2+2abi-b^2-a^2+2abi+b^2\\ =4abi=VP\)

\(VT=\left(a+bi\right)^2\left(a-bi\right)^2\\ =\left[\left(a+bi\right)\left(a-bi\right)\right]^2\\ =\left[a^2-\left(bi\right)^2\right]^2\\ =\left(a^2+b^2\right)^2=VP\)

1 tháng 4 2017

Một phương trình bậc hai nhận z và làm nghiệm là

(x - z)(x - ) = 0 hay x2 – (z + )x + z = 0.

Nếu z = a + bi thì z + = 2a, z = a2 + b2

Vậy một phương trình bậc hai cần tìm là x2 – 2ax + a2 + b2 = 0



14 tháng 5 2018

những câu tích phân như này giải tay ko hề dễ, nên mình dùng table mò ra a=13,b=18,c=78 => a+b+c=109 :v

14 tháng 5 2018

nếu dùng casio thì cách làm sao vậy bạn.

NV
2 tháng 4 2019

\(\left|z\right|=1\Rightarrow z=cosx+i.sinx\)

\(z^3-z+2=cos3x+i.sin3x-cosx-i.sinx+2\)

\(=\left(cos3x-cosx+2\right)-i.\left(sin3x-sinx\right)\)

\(=\left(2-2sin2x.sinx\right)-i.2cos2x.sinx\)

\(=2\left[\left(1-sin2x.sinx\right)-i.cos2x.sinx\right]\)

\(\Rightarrow A=\left|z^3-z+2\right|=2\sqrt{\left(1-sin2x.sinx\right)^2+cos^22x.sin^2x}\)

\(A=2\sqrt{1-2sin2x.sinx+sin^22x.sin^2x+cos^22x.sin^2x}\)

\(A=2\sqrt{1-4sin^2x.cosx+sin^2x}\)

\(A=2\sqrt{1-4\left(1-cos^2x\right)cosx+1-cos^2x}\)

\(A=2\sqrt{4cos^3x-cos^2x-4cosx+2}\)

\(A_{max}\) khi \(4cos^3x-cos^2x-4cosx+2\) đạt max

Xét hàm \(f\left(t\right)=4t^3-t^2-4t+2\) trên \(\left[-1;1\right]\)

\(f'\left(t\right)=12t^2-2t-4=0\Rightarrow\left[{}\begin{matrix}t=-\frac{1}{2}\\t=\frac{2}{3}\end{matrix}\right.\)

\(\Rightarrow f\left(t\right)\) đạt max tại \(t=-\frac{1}{2}\) hay \(A_{max}\) khi \(a=cosx=-\frac{1}{2}\)

\(\Rightarrow b^2=sin^2x=1-cos^2x=\frac{3}{4}\)

\(\Rightarrow P=2a+4b^2=-1+3=2\)

31 tháng 7 2018

a) a = c, b = – d b) a = – c, b = d

c) a = d, b = c d) a = – c, b = – d

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A