K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Bài 4:

ABCEMNQIK

a, Vì AM và BN là trung tuyến của BC và AC của tam giác ABC mà BC giao AC tại I nên I là trọng tâm của tam giác ABC

b, Vì Q là trung điểm của AB nên CQ là trung tuyến của AB của tam giác ABC mà I là trọng tâm của tam giác ABC nên Q;I;C thẳng hàng. (đpcm)

c, Vì \(AB\perp AC;EC\perp AC\) mà AB; EC phân biệt nên AB//EC

d, Vì AB// EC nên góc ABM=góc ECM (cặp góc so le trong)

Xét tam giác ABM và tam giác ECM có:

góc ABM=góc ECM (cmt);BM=CM(do AM là trung tuyến của BC); góc AMB= góc EMC(đối đỉnh)

Do đó tam giác ABM= tam giác ECM

=> AM=EM(cặp cạnh tương ứng)

mà M nằm giữa A và E (do E nằm trên tia đối của MA)

nên M là trung điểm của AE(đpcm)

e, Xét tam giác ABC vuông tại A có AM là trung tuyến của BC nên AM=BM=CM

Vì M là trung điểm của AE nên 2AM=AEmà AM=BM=> 2BM=AE=>BC=AE

Ta sẽ chứng minh được tam giác ABC=tam giác CEA(cạnh huyền- cạnh góc vuông)

=>AB=CE(cặp cạnh tương ứng) và góc ABC=góc CEA(cặp góc tương ứng)

Từ đó chứng minh được tam giác ABN=tam giác CEN(c.g.c)

=>BN=EN(cặp cạnh tương ứng) và góc ABN=góc CEN(cặp góc tương ứng)

Ta có:

góc ABN+góc NBK =góc ABC

góc CEN+góc NEI =góc CEN

=> góc ABN+góc NBK =góc CEN+góc NEI (do góc ABC=góc CEN (cmt))

mà góc ABN=góc CEN nên góc NBK=góc NEI

Ta sẽ chứng minh được tam giác BNK=tam giác ENI (g.c.g)

=> NK=NI(cặp cạnh tương ứng)

=> tam giác IKN cân tại N(đpcm)

Chúc bạn học tốt nha!!!

7 tháng 4 2017

Bài5:

A B C D N H G M

a, Xét tam giác ABC vuông tại A ta có:

\(BC^2=AB^2+AC^2\Rightarrow BC^2=8^2+6^2=64+36=100=10^2\Rightarrow BC=10\left(doBC>0\right)\)

b,Xét tam giác AMB và tam giác CMD ta có:

AM=CM(gt);góc AMB=góc CMD(đối đỉnh); BM=DM(gt)

Do đó tam giác AMB=tam giác CMD(c.g.c) (đpcm)

c, Vì N là trung điểm của CD và M là trung điểm của BD nên BN và CM lần lượt là trung tuyến của CD và BD của tam giác ACD mà BN giao CM tại G nên G là trọng tâm của tam giác BCD

Ta có:

\(AM=CM=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Vì G là trọng tâm của tam giác BCD nên \(CG=\dfrac{2}{3}CM=\dfrac{2}{3}.3=2\left(cm\right)\)

(theo tính chất trung tuyến của tam giác)

d, Vì H là trung điểm của BC nên DH là trung tuyến của BC của tam giác BCD mà G là trọng tâm của tam giác BCD nên D;G;H thẳng hàng(đpcm)

Chúc bạn học tốt nha!!!

22 tháng 10 2021

\(a,\dfrac{x^2+4x+4}{2x^2+4x}=\dfrac{\left(x+2\right)^2}{2x\left(x+2\right)^2}=\dfrac{x+2}{2x}\ne\dfrac{x+2}{2}\\ b,\dfrac{x^2-2}{x^2-1}\ne\dfrac{x+2}{x+1}\\ c,\dfrac{x^3-36x}{x^3+12x^2+36}=\dfrac{x\left(x-6\right)\left(x+6\right)}{x\left(x+6\right)^2}=\dfrac{x-6}{x+6}\ne\dfrac{-\left(x-6\right)}{x+6}=\dfrac{6-x}{x+6}\)

11 tháng 1 2017

page là gf

12 tháng 1 2017

Page là j z

23 tháng 8 2021

Bài 7:

a)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge m+1\\x\ge\dfrac{m}{4}\end{matrix}\right.\)

TH1: \(m+1< \dfrac{m}{4}\Rightarrow m< -\dfrac{4}{3}\)

\(\Rightarrow x\ge\dfrac{m}{4}\)\(\Rightarrow x\in\)\([\dfrac{m}{4};+\)\(\infty\)\()\)

Để hàm số xác định với mọi x dương \(\Leftrightarrow\)\(\left(0;+\infty\right)\subset\)\([\dfrac{m}{4};+\)\(\infty\)\()\)

\(\Leftrightarrow\dfrac{m}{4}\ge0\Leftrightarrow m\ge0\) kết hợp với \(m< -\dfrac{4}{3}\Rightarrow m\in\varnothing\)

TH2:\(m+1\ge\dfrac{m}{4}\Rightarrow m\ge-\dfrac{4}{3}\)

\(\Rightarrow x\ge m+1\)\(\Rightarrow\)\(x\in\)\([m+1;+\)\(\infty\))

Để hàm số xác định với mọi x dương \(\Leftrightarrow\)\(\left(0;+\infty\right)\subset\)\([m+1;\)\(+\infty\)\()\)

\(\Leftrightarrow m+1\le0\Leftrightarrow m\le-1\) kết hợp với \(m\ge-\dfrac{4}{3}\)

\(\Rightarrow m\in\left[-\dfrac{4}{3};-1\right]\)

Vậy...

b)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge2-m\\x\ne-m\end{matrix}\right.\)\(\Rightarrow x\in\)\([2-m;+\)\(\infty\)) (vì \(-m< 2-m\))

Để hàm số xác ddingj với mọi x dương

\(\Leftrightarrow\left(0;+\infty\right)\subset\)\([2-m;+\)\(\infty\))

\(\Leftrightarrow2-m\le0\Leftrightarrow m\ge2\)

Vậy...

23 tháng 8 2021

Bài 9:

a)Đặt \(f\left(x\right)=x^2+2x-2\)

TXĐ:\(D=R\)

TH1:\(x\in\left(-\infty;-1\right)\)

Lấy \(x_1;x_2\in\left(-\infty;-1\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-\left(x_2^2+2x_2-2\right)}{x_1-x_2}=x_1+x_2+2\)

Vì \(x_1;x_2\in\left(-\infty;-1\right)\Rightarrow x_1+x_2< -1+-1=-2\)\(\Leftrightarrow x_1+x_2+2< 0\)

\(\Rightarrow I< 0\)

Suy ra hàm nb trên \(\left(-\infty;-1\right)\)

TH2:\(x\in\left(-1;+\infty\right)\)

Lấy \(x_1;x_2\in\left(-1;+\infty\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-\left(x_2^2+2x_2-2\right)}{x_1-x_2}=x_1+x_2+2>0\)

Suy ra hàm đb trên \(\left(-1;+\infty\right)\)

Vậy...

b)Đặt \(f\left(x\right)=\dfrac{2}{x-3}\)

TXĐ:\(D=R\backslash\left\{3\right\}\)

TH1:\(x\in\left(-\infty;3\right)\)

Lấy \(x_1;x_2\in\left(-\infty;3\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{2}{x_1-3}-\dfrac{2}{x_2-3}}{x_1-x_2}=\dfrac{-2}{\left(x_1-3\right)\left(x_2-3\right)}\)

Vì \(x_1;x_2\in\left(-\infty;3\right)\Rightarrow x_1-3< 0;x_2-3< 0\Rightarrow\left(x_1-3\right)\left(x_2-3\right)>0\)

\(\Rightarrow I< 0\)

Suy ra hàm nb trên \(\left(-\infty;3\right)\)

TH2:\(x\in\left(3;+\infty\right)\)

Lấy \(x_1;x_2\in\left(3;+\infty\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{2}{x_1-3}-\dfrac{2}{x_2-3}}{x_1-x_2}=\dfrac{-2}{\left(x_1-3\right)\left(x_2-3\right)}\)

Vì \(x_1;x_2\in\left(3;+\infty\right)\Rightarrow x_1-3>0;x_2-3>0\Rightarrow\left(x_1-3\right)\left(x_2-3\right)>0\)

\(\Rightarrow I< 0\)

Suy ra hàm nb trên \(\left(3;+\infty\right)\)

Vậy hàm nb trên \(\left(-\infty;3\right)\) và \(\left(3;+\infty\right)\)

 

5 tháng 7 2015

trên 2 nữa mặt phẳng đối nhau thì nó làm sao // được 

6 tháng 7 2015

ê mọi người ấy chỉ muốn **** à

6 tháng 7 2015

Được vậy bạn giải giùm mình nha đề bài nè :Tính hợp lý(nếu có thể) a)7^5:7^3+3^2.2^3-2009^() b)5^3.52+5^3.7^2-5^3 c)[130-3.(5.2^4-5^2.2)]2^3 d)10+12+14+....+148+150  Tìm x€N a)8.(x-5)+17=17 b)125-5.(3x-1)=5^5:5^3 c)4^x+1 +4^()=65
 

28 tháng 6 2021

â)ĐK;`x-2>=0`

`<=>x>=2`

c)ĐK:`2017/x>=0(x ne 0)`

Mà `2017>0`

`<=>x>0`

e)ĐK:`x^2+2017>=0`

`<=>x^2>=-2017AAx in RR`

b)ĐK:`2-3x>=0`

`<=>3x<=2`

`<=>x<=2/3`

d)ĐK:`(-2017)/(5-x)>=0(x ne 5)`

`<=>2017/(x-5)>=0`

Mà `2017>0`

`<=>x-5>0<=>x>5`

f)ĐK:`1-x^2>=0`

`<=>x^2<=1`

`<=>-1<=x<=1`

6 tháng 5 2021

Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)\(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)\(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
      => 4   =   1   + DC
      => DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có: 
   \(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
   \(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)\(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm

6 tháng 5 2021

Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có: 
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm

4 tháng 7 2016

1)\(2^3\cdot37-2^3\cdot63-10=2^3\left(37-63\right)-10=8\cdot-26-10\)=-218

2)\(2^3+2^2+2^4=2^2\left(1+2+4\right)=4\cdot7=28\)

3)\(5^3-5=5\left(5^2-1\right)=5\cdot24=120\)

4)\(3+3^2+3^4=3\left(1+3+3^3\right)=3\cdot13=39\)

5)\(x^{n+1}-x^n=x^n\left(x-1\right)\)

4 tháng 7 2016

bạn viết gì mình ko hiểu

AH
Akai Haruma
Giáo viên
3 tháng 5 2023

Bài đâu hở bạn?