K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1)

Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)

Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)

+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)

+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)

+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)

Vậy GTNN của \(C=-6\) khi \(x=\pm2\)

2) 

Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)

Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)

Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)

5 tháng 1 2020

Ví dụ một bài toán : 

Tìm GTLN của B = 10-4 | x-2| 

Vì |x-2| \(\ge0\forall x\)

\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ

+) Vì y và x tỉ lệ thuận với nhau nên:

y=kxy=kx

\Rightarrow y_1=k\cdot x_1y1=kx1

hay 6=k\cdot36=k3

\Rightarrow k=2k=2

Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.

1 tháng 4

Chúng ta cần chứng minh các điều kiện sau cho các số nguyên dương \(x\)\(y\) thỏa mãn \(x^{3} + 1\) chia hết cho \(y + 1\)\(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Bài toán phần a)

Chứng minh rằng \(x^{3} + 1\) chia hết cho \(y + 1\).

Giải: Ta đã biết rằng \(x^{3} + 1\) chia hết cho \(y + 1\), tức là:

\(\frac{x^{3} + 1}{y + 1} \in \mathbb{Z} .\)

Ta có thể xem xét \(x^{3} + 1\) dưới dạng nhân tử:

\(x^{3} + 1 = \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)

Ta cần chứng minh rằng \(\left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right)\) chia hết cho \(y + 1\). Điều này có nghĩa là \(y + 1\) là ước của \(x^{3} + 1\), hay là:

\(y + 1 \mid \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)

Giả sử rằng \(x^{3} + 1\) chia hết cho \(y + 1\), thì sẽ có một số \(k\) sao cho:

\(x^{3} + 1 = k \left(\right. y + 1 \left.\right) ,\)

tức là \(k\) là một số nguyên. Như vậy, \(x^{3} + 1\) chia hết cho \(y + 1\), và bài toán đã được chứng minh cho phần a.

Bài toán phần b)

Chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Giải: Ta cần chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), tức là:

\(\frac{x^{3} y^{3} - 1}{y + 1} \in \mathbb{Z} .\)

Ta có thể biến đổi \(x^{3} y^{3} - 1\) theo công thức phân tích đa thức:

\(x^{3} y^{3} - 1 = \left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right) .\)

Ta cần chứng minh rằng \(\left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right)\) chia hết cho \(y + 1\).

Giả sử rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), ta có:

\(x^{3} y^{3} - 1 = m \left(\right. y + 1 \left.\right) ,\)

với một số nguyên \(m\), do đó \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Như vậy, ta đã chứng minh được rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), hoàn thành bài toán phần b.

Kết luận: Chúng ta đã chứng minh được rằng:

  • a) \(x^{3} + 1\) chia hết cho \(y + 1\),
  • b) \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
10 tháng 9 2016

Ta có:

213 + 210 + 2x = y2

=> 8192 + 1024 + 2x = y2

=> 9216 + 2x = y2

=> 962 + 2x = y2

=> 2x = y2 - 962

=> 2x = (y - 96).(y + 96)

=> y - 96 và y + 96 đều là lũy thừa của 2

Do y + 96 > y - 96 nên ta giả sử y + 96 = 2m; y - 96 = 2n (m > n)

=> 2m - 2n = (y + 96) - (y - 96)

=> 2n.(2m-n - 1) = y + 96 - y + 96

=> 2n.(2m-n - 1) = 192

=> 192 chia hết cho 2m-n - 1

Mà 2m-n - 1 chia 2 dư 1

=> 2m-n - 1 = 1 hoặc 2m-n - 1 = 3

+ Với 2m-n - 1 = 1 thì 2n = 192, không tìm được giá trị thỏa mãn

+ Với 2m-n - 1 = 3 thì 2n = 64 = 26

=> 2m-n = 4 = 22; n = 6

=> m - n = 2; n = 6

=> m = 8; n = 6

=> y = 28 - 96 = 160; 2x = (160 - 96).(160 + 96) = 16384 = 214

=> x = 14

Vậy y = 160; x = 14

 

 

 

10 tháng 9 2016

ms đầu nháp ra nhìn ngắn v mà lm ra coi bộ cx dài phết